Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Phytomedicine ; 102: 154153, 2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1977720

ABSTRACT

BACKGROUND: The cytokine storm (CS) triggered by coronavirus disease 2019 (COVID-19) has caused serious harm to health of humanity and huge economic burden to the world, and there is a lack of effective methods to treat this complication. PURPOSE: In this research, we used network pharmacology and molecular docking to reveal the interaction mechanism in the glycyrrhetinic acid (GA) for the treatment of CS, and validated the effect of GA intervention CS by experiments. STUDY DESIGN: First, we screened corresponding target of GA and CS from online databases, and obtained the action target genes through the Venn diagram. Then, protein-protein interaction (PPI) network, Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the action target genes were acquired by R language to predict its mechanism. Next, molecular docking was performed on core targets. Finally, experiments in which GA intervened in lipopolysaccharide (LPS)-induced CS were implemented. RESULTS: 84 action target genes were obtained from online database. The PPI network of target genes showed that TNF, IL6, MAPK3, PTGS2, ESR1 and PPARG were considered as the core genes. The results of GO and KEGG showed that action target genes were closely related to inflammatory and immune related signaling pathways, such as TNF signaling pathway, IL-17 signaling pathway, Human cytomegalovirus infection, PPAR signaling pathway and so on. Molecule docking results prompted that GA had fine affinity with IL6 and TNF proteins. Finally, in vivo and in vitro experimental results showed that GA could significantly inhibit LPS-induced CS. CONCLUSION: GA has a potential inhibitory effect on CS, which is worthy of further exploration.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Glycyrrhetinic Acid , Cytokine Release Syndrome/drug therapy , Drugs, Chinese Herbal/pharmacology , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/therapeutic use , Humans , Interleukin-6 , Lipopolysaccharides , Molecular Docking Simulation
2.
Biomolecules ; 11(6)2021 06 08.
Article in English | MEDLINE | ID: covidwho-1264413

ABSTRACT

The phytotherapeutic properties of Glycyrrhiza glabra (licorice) extract are mainly attributed to glycyrrhizin (GR) and glycyrrhetinic acid (GA). Among their possible pharmacological actions, the ability to act against viruses belonging to different families, including SARS coronavirus, is particularly important. With the COVID-19 emergency and the urgent need for compounds to counteract the pandemic, the antiviral properties of GR and GA, as pure substances or as components of licorice extract, attracted attention in the last year and supported the launch of two clinical trials. In silico docking studies reported that GR and GA may directly interact with the key players in viral internalization and replication such as angiotensin-converting enzyme 2 (ACE2), spike protein, the host transmembrane serine protease 2, and 3-chymotrypsin-like cysteine protease. In vitro data indicated that GR can interfere with virus entry by directly interacting with ACE2 and spike, with a nonspecific effect on cell and viral membranes. Additional anti-inflammatory and antioxidant effects of GR cannot be excluded. These multiple activities of GR and licorice extract are critically re-assessed in this review, and their possible role against the spread of the SARS-CoV-2 and the features of COVID-19 disease is discussed.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Glycyrrhetinic Acid/pharmacology , Glycyrrhizic Acid/pharmacology , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/metabolism , Glycyrrhetinic Acid/therapeutic use , Glycyrrhiza/chemistry , Glycyrrhizic Acid/therapeutic use , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL